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Many-body approach to the dynamics of batch learning
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Using the cavity method and diagrammatic methods, we model the dynamics of batch learning of restricted
sets of examples, widely applicable to general learning cost functions, and fully taking into account the
temporal correlations introduced by the recycling of the examples. The approach is illustrated using the
Adaline rule learning teacher-generated or random examples.

PACS number~s!: 87.10.1e, 87.18.Sn, 07.05.Mh, 05.20.2y
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I. INTRODUCTION

An important problem in information processing is th
extraction of the parameters underlying a set of examp
which is useful in such tasks as classification and regres
@1#. This process, usually calledlearning, is often achieved
by defining an appropriate energy function which refle
both the inability of the parameters in reproducing the tra
ing data, and the unlikelihood in fulfilling their prior expec
tation. The energy function is then minimized by a gradie
descent process with respect to the parameters until a st
state is reached. For many years, physicists have gained
cess in studying the steady-state behavior of learning
cesses using equilibrium statistical mechanics@2#. On the
other hand, the dynamics of learning was much less
quently addressed. The major difficulty is its complexi
since it typically involves the evolution of many microscop
parameters, each element affecting and being affected
others in a convolutional way. The challenge to the phy
cists is thus to describe this multivariate process using m
roscopic variables.

Recently, much progress has been made on modeling
dynamics ofon-line learning of infinite training sets@3–6#.
In this model, an independent example is generated for e
learning step. Since statistical correlations among the
amples can be ignored, the dynamics can be simply
scribed by instantaneous dynamical variables. This simp
cation results in a significant reduction in the complexity
analyzing learning dynamics, thereby leading to great
vances in our understanding of on-line learning.
multilayer perceptrons, for instance, the persistence of a
mutation symmetric stage which retards the learning proc
was well studied. Subsequent proposals to speed up lear
were made, illustrating the usefulness of the on-line
proach@6,7#.

However, on-line learning represents an ideal case
which one has access to an almost infinite training
whereas in many applications, the collection of training e
amples may be costly. In reality, the same restricted se
examples is recycled during the learning process. This in
duces temporal correlations of the parameters in the lear
history, which was the complexity circumvented in the mo
els of on-line learning.

There have been attempts using statistical physics to
scribe the dynamics of learning of finite training sets.
batch learning, the same restricted set of examples is
PRE 621063-651X/2000/62~3!/4036~7!/$15.00
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vided foreachlearning step. Using the dynamical mean-fie
theory, early work has been done on the steady-state be
ior and asymptotic time scales in perceptrons with bin
weights, rather than the continuous weights of more comm
interest@8#. Much benchmarking of batch learning has be
done for linear learning rules such as Hebbian learning@9,10#
or Adaline learning@11#. The work on Adaline learning was
further extended to the study of linear perceptrons learn
nonlinear rules@14,15#. However, not much work has bee
done on the learning of nonlinear rules with continuo
weights. In this respect, it is interesting to note the rec
attempts using thedynamical replica theory@9,10#. It ap-
proximates the temporal correlations during learning by
stantaneous effective macroscopic variables. Further
proximations facilitate results for nonlinear learnin
Nevertheless, the rigor of these approximations remains t
confirmed in the general case.

In this paper, we model batch learning of restricted sets
examples, by considering the learning model as a many-b
system. Each example makes a small contribution to
learning process, which can be described by linear-respo
terms in a sea of background examples. Two ingredients
important to our theory.

~a! The cavity method. Originally developed for magnetic
systems and spin glasses@16#, the method was adopted t
learning in perceptrons@17#, and subsequently extended
the teacher-student perceptron@18#, the AND machine@19#,
the multiclass perceptron@20#, the committee tree@21,22#,
Bayesian learning@23#, and pruned perceptrons@24#. These
studies only considered the equilibrium properties of lea
ing, whereas here we are generalizing the method to st
the dynamics@16#. It uses a self-consistency argument
compare the evolution of the activation of an example wh
it is absent or present in the training set. When absent,
activation of the example is called thecavity activation, in
contrast to its generic counterpart when it is included in
training set.

~b! The diagrammatic approach. To describe the differ-
ence between the cavity activation and its generic coun
part of an example, we apply linear-response theory and
Green’s function to describe how the influence of the add
example propagates through the learning history. T
Green’s function is represented by a series of diagra
whose averages over examples are performed by a se
pairing rules similar to those introduced for Adaline learni
@11#, as well as in the dynamics of layered networks@25#.
4036 ©2000 The American Physical Society
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Here we take a further step and use the diagrams to des
the changes from cavity to generic activations, as was d
in @26#, rather than the evolution of specific dynamical va
ables in the case of linear rules@11#. Hence our dynamica
equations are widely applicable to any gradient-desc
learning rule which minimizes anarbitrary cost function in
terms of the activation. It fully takes into account the temp
ral correlations during learning, and is exact for large n
works.

However, the solutions of the general dynamical eq
tions are not tractable for nonlinear learning rules. In fact,
study of the general solution constitutes an area of fut
research and is beyond the scope of the present pa
Rather, for illustration, we apply the equations to a tracta
case, namely Adaline learning, and extract results usefu
efficient learning. Preliminary work has been presented
cently @27#.

The paper is organized as follows. In Sec. II we formul
the dynamics of batch learning. In Sec. III we introduce
cavity method and the dynamical equations for the mac
scopic variables:~a! G(t,s), the Green’s function that propa
gates the response to a stimulus from times to t; ~b! C(t,s),
the correlation function, which is related to the Green’s fun
tion via the fluctuation response relation;~c! R(t), the over-
lap between the student and teacher perceptrons. In Se
we describe the results useful for efficient learning applied
the case of the Adaline rule. The appendixes explain
diagrammatic approach in describing the Green’s functi
the fluctuation response relation, and the expressions
Adaline learning via the Laplace transform.

II. FORMULATION

Consider the single layer perceptron withN@1 input
nodes$j j% connecting to a single output node by the weig
$Jj% and often the biasu as well. For convenience we as
sume that the inputsj j are Gaussian variables with mean
and variance 1, and the output state is a functionf (x) of the
activation xat the output node, wherex5JW•jW1u. For binary
outputs,f (x)5sgnx.

The network is assigned to ‘‘learn’’p[aN examples
which map inputs$j j

m% to the outputs$Sm% (m51, . . . ,p).
In the case of random examples,Sm are random binary vari-
ables, and the perceptron is used as a storage device. I
case of teacher-generated examples,Sm are the outputs gen
erated by a teacher perceptron with weights$Bj% and often a
biasf as well, namelySm5 f (ym); ym5BW •jWm1f.

Batch learning is achieved by adjusting the weights$Jj%
iteratively so that a certain cost function in terms of the
tivations $xm% and the outputSm of all examples is mini-
mized. Hence we consider a general cost functionE
52(mg(xm ,ym). The precise functional form ofg(x,y) de-
pends on the adopted learning algorithm. In previous stud
g(x,y)52(S2x)2/2 with S5sgny in Adaline learning
@11–13#, andg(x,y)5xS in Hebbian learning@9,10#.

To ensure that the perceptron fulfills the prior expectat
of minimal complexity, it is customary to introduce a weig
decay term. In the presence of noise, the gradient des
dynamics of the weights is given by
ibe
ne

nt

-
t-

-
e
e
er.
e
or
-

e
e
-

-

IV
o
e
,

or

s

the

-

s,

n

nt

dJj~ t !

dt
5

1

N (
m

g8„xm~ t !,ym…j j
m2lJj~ t !1h j~ t !, ~1!

where the prime represents partial differentiation with
spect tox, l is the weight decay strength, andh j (t) is the
noise term at temperatureT with

^h j~ t !&50 and ^h j~ t !hk~s!&5
2T

N
d jkd~ t2s!. ~2!

The dynamics of the biasu is similar, except that no bias
decay should be present according to consistency argum
@1#,

du~ t !

dt
5

1

N (
m

g8„xm~ t !,ym…1hu~ t !. ~3!

III. THE CAVITY METHOD

Our theory is the dynamical version of the cavity meth
@16,21,22#. It uses a self-consistency argument to consi
what happens when a new example is added to a training
The central quantity in this method is thecavity activation,
which is the activation of a new example for a perceptr
trained without that example. Since the original network h
no information about the new example, the cavity activat
is random. Here we present the theory foru5f50, skipping
extensions to biased perceptrons. Denoting the new exam
by the label 0, its cavity activation at timet is h0(t)5JW (t)
•jW0. For largeN, h0(t) is a Gaussian variable. Its covar
ance is given by the correlation functionC(t,s) of the
weights at timest and s, that is, ^h0(t)h0(s)&5JW (t)•JW (s)
[C(t,s), wherej j

0 andjk
0 are assumed to be independent f

j Þk. For teacher-generated examples, the distribution is
ther specified by the teacher-student correlationR(t), given
by ^h0(t)y0&5JW (t)•BW [R(t).

Now suppose the perceptron incorporates the new
ample at the batch-mode learning step at times. Then the
activation of this new example at a subsequent timet.s will
no longer be a random variable. Furthermore, the activati
of the original p examples at timet will also be adjusted
from $xm(t)% to $xm

0 (t)% because of the newcomer, whic
will in turn affect the evolution of the activation of examp
0, giving rise to the so-called Onsager reaction effects. T
makes the dynamics complex, but fortunately for largep
;N, we can assume that the adjustment fromxm(t) to xm

0 (t)
is small, and linear-response theory can be applied.

Suppose the weights of the original and new perceptro
time t are$Jj (t)% and$Jj

0(t)%, respectively. Then a perturba
tion of Eq. ~1! yields

S d

dt
1l D @Jj

0~ t !2Jj~ t !#

5
1

N
g8„x0~ t !,y0…j j

01
1

N (
mk

j j
mg9„xm~ t !,ym…jk

m

3@Jk
0~ t !2Jk~ t !#. ~4!
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The first term on the right-hand side describes the prim
effects of adding example 0 to the training set, and is
driving term for the difference between the two perceptro
The second term describes the many-body reactions du
the changes of the original examples caused by the ad
example, and is referred to as the Onsager reaction term.
should note the difference between the cavity and gen
activations of the added example. The former is denoted
h0(t) and corresponds to the activation in the percept
$Jj (t)%, whereas the latter, denoted byx0(t) and correspond-
ing to the activation in the perceptron$Jj

0(t)%, is the one used
in calculating the gradient in the driving term of Eq.~4!.
Since their notations are sufficiently distinct, we have om
ted the superscript 0 inx0(t), which appears in the back
ground examplesxm

0 (t).
The equation can be solved by the Green’s-function te

nique, yielding

Jj
0~ t !2Jj~ t !5(

k
E ds Gjk~ t,s!S 1

N
g08~s!jk

0D , ~5!

where g08(s)[g8„x0(s),y0… and Gjk(t,s) is the weight
Green’s function, which describes how the effects of a pe
turbation propagates from weightJk at learning times to
weight Jj at a subsequent timet. In the present context, th
perturbation comes from the gradient term of example
such that integrating over the history and summing over
nodes give the resultant change fromJj (t) to Jj

0(t).
For largeN the weight Green’s function can be found b

the diagrammatic approach explained in Appendix A. T
result is self-averaging over the distribution of examples a
is diagonal, i.e., limN→`Gjk(t,s)5G(t,s)d jk , where

G~ t,s!5G(0)~ t2s!1aE dt1E dt2G(0)~ t2t1!

3^Dm~ t1 ,t2!gm9 ~ t2!&G~ t2 ,s!. ~6!

Here the bare Green’s functionG(0)(t2s) is given by

G(0)~ t2s![Q~ t2s!exp„2l~ t2s!…, ~7!

andQ is the step function.Dm(t,s) is theexample Green’s
functiongiven by

Dm~ t,s!5d~ t2s!1E dt8Dm~ t,t8!gm9 ~ t8!G~ t8,s!. ~8!

Our key to the macroscopic description of the learning
namics is to relate the activation of the examples to th
cavity counterparts, which is known to be Gaussian. Mu
plying both sides of Eq.~5! by j j

0 and summing overj, we
have

x0~ t !2h0~ t !5E ds G~ t,s!g08~s!. ~9!

In turn, the covariance of the cavity activation distribution
provided by the fluctuation-response relation explained
Appendix B,
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C~ t,s!5aE dt8G(0)~ t2t8!^gm8 ~ t8!xm~s!&

12TE dt8G(0)~ t2t8!G~s,t8!. ~10!

Furthermore, for teacher-generated examples, its mean i
lated to the teacher-student correlation given by

R~ t !5aE dt8G(0)~ t2t8!^gm8 ~ t8!ym&. ~11!

To monitor the progress of learning, we are interested
three performance measures.~a! Training error e t , which is
the probability of error for the training examples, and can
determined from the distributionp(xuy) that the student ac
tivation of a trained example takes the valuex for a given
teacher activationy of the same example,

e t5E DyE dx p~xuy!Q~2xy!. ~12!

~b! Test errore test, which is the probability of error when the
inputsj j

m of the training examples are corrupted by an ad
tive Gaussian noise of varianceD2. This is a relevant perfor-
mance measure when the perceptron is applied to pro
data which are the corrupted versions of the training da
When D250, the test error reduces to the training err
Since the corrupted activation has an additional variance
D2C(t,t), e test is given by

e test5E DyE dx p~xuy!HS x sgny

AD2C~ t,t !
D . ~13!

~c! Generalization erroreg for teacher-generated example
which is the probability of error for an arbitrary inputj j
when the teacher and student outputs are compared. Fo
example with teacher activationy, the corresponding studen
activation is a Gaussian with meanR(t)y and variance
C(t,t). Henceeg is given by

eg5
1

p
arccos

R~ t !

AC~ t,t !
. ~14!

The cavity method can be applied to the dynamics of lea
ing with an arbitrary cost function. When it is applied to th
Hebb rule, it yields results identical to@9#. Here for illustra-
tion, we present the results for the Adaline rule. This is
common learning rule and bears resemblance with the m
common back-propagation rule. Theoretically, its dynam
is particularly convenient for analysis sinceg9(x)521, ren-
dering the weight Green’s function time translation invaria
i.e., G(t,s)5G(t2s). In this case, the dynamics can b
solved by the Laplace transform explained in Appendix
Results useful for efficient learning are illustrated in the f
lowing section.

IV. RESULTS

~i! Overtraining ofeg. As shown in Fig. 1,eg decreases a
the initial stage of learning. However, for sufficiently wea
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weight decay, it attains a minimum at a finite learning tim
before reaching a higher steady-state value. This is ca
overtrainingsince at the later stage of learning, the perc
tron is focusing too much on the specific details of the tra
ing set. In this caseeg can be optimized byearly stopping,
i.e., terminating the learning process before it reaches
steady state. Similar behavior is observed in linear perc
trons @13–15#.

This phenomenon can be controlled by tuning the wei
decayl. The physical picture is that the perceptron w
minimum eg corresponds to a point with a magnitudeuJW* u.
Whenl is too strong,uJW u never reaches this magnitude a
eg saturates at a suboptimal value. On the other hand, w
l is too weak,uJW u grows with learning time and is able t
pass near the optimal point during its learning history. He
the weight decaylot for the onset of overtraining is closel
related to the optimal weight decaylopt at which the steady
stateeg is minimum. Indeed, atT50 and for all values of
a, lot5lopt5p/221; the coincidence oflot and lopt is
also observed previously@13#. This is illustrated in Fig. 2,
which shows the early stopping timetes at whicheg is mini-
mum in the learning history. For weak weight decay,tes re-
mains relatively insensitive to the value ofl, but diverges
whenl approacheslopt.

FIG. 1. The evolution of the generalization error ata50.8 and
T50 for different weight decay strengthsl. Theory: solid line,
simulation: symbols.

FIG. 2. Early stopping timetes for different training set sizea.
Inset: The temperature dependence of the optimal weight decaylopt

and the onset of overtraininglot at a55.
d
-
-

e
p-

t

en

e

Early stopping forl,lot5lopt can speed up the learnin
process, but cannot outperform the optimal result at
steady state. A recent empirical observation confirms th
careful control of the weight decay may be better than ea
stopping in optimizing generalization@28#.

At nonzero temperatures, we find the new result thatlot
and lopt may become different. Here we only mention th
case of sufficiently largea. As shown in the inset of Fig. 2
lopt lies inside the region of overtraining, implying that eve
the best steady stateeg is outperformed by some point durin
its own learning history. This means the optimaleg can only
be attained by tuningboth the weight decay and learnin
time. However, at least in the present case, computatio
results show that the improvement is marginal.

~ii ! Overtraining ofe test. Consider the effects of tuning th
input noise from zero, whene test starts to increase frome t .
At the steady statee t is optimized byl50 for a,1, and by
a relatively smalll.0 for a.1. This means thate test is
optimized with no or only little concern about the magnitu
of J2. However, when input noise is introduced, it adds
Gaussian noise of varianceD2J2 to the activation distribu-
tion. The optimization ofe test now involves minimizing the
error of the training set without using an excessively lar
J2. Thus the role of weight decay becomes important.
deed, atT50, lopt5aD2 for random examples, wherea
lopt}D2 approximately for teacher-generated examples. T
illustrates how the environment in anticipated applicatio
i.e., the level of input noise, affects the optimal choice
perceptron parameters.

Analogous to the dynamics ofeg , overtraining can occur
when a sufficiently weakl allowsJW to pass near the optima
point during its learning history. Indeed, atT50 the onset of
overtraining is given bylot5lopt for random examples
whereaslot'lopt for teacher-generated examples. At no
zero temperatures,lot andlopt become increasingly distinct
and for sufficiently largea, lopt,lot as shown in the inse
of Fig. 3, so that the optimale test can only be attained by
tuning both the weight decay and learning time.

~iii ! Average dynamics. When learning has reached stea
state, the dynamical variables fluctuate about their temp
averages because of thermal noises. If we consider a per

FIG. 3. The training error ata50.1 andl55 of the thermally
averaged perceptron for random examples versus the durationt of
the monitoring period for thermal averaging. Inset: The lines of
optimal weight decaylopt and the onset of overtraininglot of the
test error for teacher-generated examples ata53 andT50.3.
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tron constructed using the thermally averaged weights^Jj& th ,
we can then prove that it is equivalent to the percept
obtained atT50. This equivalence implies that for perce
trons with thermal noises, the training and generalization
rors can be reduced by temporal averaging down to thos
T50.

We can further compute the performance improvemen
a function of the durationt of the monitoring period for
thermal averaging, as confirmed by simulations in Fig. 3.
the asymptotic limit, the average overlap of the studentJj

with the teacherBj is independent of time, so that^JW & th•BW
5 limt→`R(t). On the other hand, its amplitude is given b

C̄5 lim
T0→0

2

t2E
T0

T01t

dt1E
T0

t1
dt2C~ t1 ,t2!. ~15!

Using Eq.~C12!, this reduces to

C̄5E dk

k2 r~k!~k2l!F11
2

p
~k2l21!G

1TE dk

k
r~k!S e2kt211kt

k2t2/2
D . ~16!

Note that the density of statesr(k) consists of a spectrum o
relaxation modes exp(2kt) whose ratek lies in the range
kmin<k<kmax, wherekmax and kmin are l1(Aa61)2, re-
spectively. Fora,1, there is an additional relaxation mod
with ratel, which describes the relaxation by weight dec
inside the (N2p)-dimensional solution space of zero trai
ing error. Hence the monitoring period scales askmin

21 for a
.1 and l21 for a,1. This thermal equilibration time
agrees with the relaxation time proposed for asymptotic
namics in@11#.

We remark that the relaxation time for steady-state
namics may not be the same as the convergence time
learning in the transient regime. For example, for vanish
a at T50, a significant reduction ofe t takes place in a time
scale proportional to (11l)21. Hence for a vanishing
weight decay, this time scale is independent ofl, which can
be attributed to the dynamics being dominated by a gro
of the projection onto the solution space of zero train
error. On the other hand, the asymptotic relaxation time
verges asl21, since the weight vector already resides in t
solution space.

V. CONCLUSION

In summary, we have introduced a general framework
modeling the dynamics of learning based on the cav
method, which is applicable to general learning cost fu
tions, though its tractable solutions are not generally av
able. It allows us to reach useful conclusions about overtr
ing and early stopping, input noise and temperature effe
transient dynamics, and average dynamics.

An example of extending the present study concerns
case of learning in biased perceptrons. Since no decay
is present in the learning of the bias in Eq.~3!, its dynamics
is modified. For sufficiently large weight decay, we find th
there is an additional relaxation mode which may cause
n

r-
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-
for
g
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-
l-
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e
rm

t
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bias to be learned slower than the weights. Details will
presented elsewhere.

We consider the present work as the beginning of an
depth study of learning dynamics. An important issue is th
whether the analysis remains tractable for nonlinear learn
rules. In general,Dm(t,s) in Eq. ~8! has to be expanded as
series. The dynamical equations are then the starting poin
a perturbation theory. Another applicable area is the cas
batch learning with very large learning steps, whose anal
remains simple due to its fast convergence@14#. Preliminary
results are promising. The method can also be applied
on-line learning of restricted sets of examples.

An alternative general theory for learning dynamics is t
dynamical replica theory@9#. It yields exact results for Heb
bian learning, but for less trivial cases, the analysis is
proximate and complicated by the need to solve rep
saddle point equations at every learning instant. It is ho
that by adhering to an exact formalism, the cavity meth
can provide more fundamental insights when extended
multilayer networks.
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APPENDIX A: THE GREEN’S FUNCTION

Substituting Eq.~5! into Eq. ~4!, we see that the Green’
function satisfies

S d

dt
1l DGjk~ t,s!5d~ t2s!d jk1

1

N (
m i

j j
mgm9 ~ t !j i

mGik~ t,s!.

~A1!

Introducing the bare Green’s functionG(0)(t2s) in Eq. ~7!,

Gjk~ t,s!5G(0)~ t2s!d jk1
1

N (
m i

E dt8G(0)~ t2t8!

3j j
mgm9 ~ t8!j i

mGik~ t8,s!. ~A2!

This equation is represented diagrammatically in Fig. 4~a!.
We use a slanted line to represent an example bit, the top
bottom ends of the line corresponding to the example la
and node label, respectively. A filled circle representsgm9 (t).
Thin and thick lines represent the bare and dressed Gre
functionsG(0)(t2s) andG(t,s), respectively. The iterative
solution to Eq.~A2! can be represented by the series of d
grams in Fig. 4~b!. It is convenient to concurrently introduc
theexampleGreen’s functionDm(t,s) as shown in Fig. 4~c!.

The average over the distribution of example inputs
done by pairing of example or node labels and is represe
by dashed lines connecting the vertices above or below
solid lines. Pairing of example and node labels yields fact
of 1 anda, respectively. Noting that crossing diagrams
not contribute@11#, the two Green’s functions can be ex
pressed in terms of the self-energiesS and Pm , via the
Dyson’s equations in Fig. 4~d!. The self-energies are define
in Fig. 4~e!, and are characterized by having the first node
example paired with the last one only. The self-energies
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FIG. 4. ~a! Diagrammatic representation o
Eq. ~A2!; ~b! iterative solution to Eq.~A2!; ~c!
the example Green’s function;~d! Dyson’s equa-
tions; ~e! the self-energies;~f! the self-energies in
terms of the Green’s functions.
s

ia

h

h
.

s

in turn be expressed in terms of the Green’s functions a
Fig. 4~f!, thus allowing for self-consistent solutions.

After eliminating the self-energies, the results of the d
grammatic analysis are given by Eqs.~6! and ~8!.

APPENDIX B:
THE FLUCTUATION RESPONSE RELATION

In terms of the bare Green’s function, the solution to t
dynamical equation~1! is

Jj~ t !5
1

N (
m

E dt8G(0)~ t2t8!gm8 ~ t8!j j
m

1E dt8G(0)~ t2t8!h j~ t8!. ~B1!

Multiplying both sides byJj (s) and summing overj, we
have

C~ t,s!5aE dt8G(0)~ t2t8!^gm8 ~ t8!xm~s!&

1E dt8G(0)~ t2t8!(
j

Jj~s!h j~ t8!. ~B2!

The correlation betweenJj (s) andh j (t8) can be considered
by comparing the learning process with another one whic
noiseless betweent82e andt81e, but is otherwise identical

Denoting the weight of this alternative process byJj
\h(t8) , we

have
in

-

e

is

Jj~s!5Jj
\h(t8)~s!1E

t82e

t81e
dt9G~s,t9!h j~ t9!. ~B3!

Noting thatJj
\h(t8)(s) is uncorrelated withh j (t8), andh j (t9)

has ad-function correlation withh j (t8), we arrive at Eq.
~10!.

Similarly, multiplying both sides byBj and summing over
j, we arrive at Eq.~11!.

APPENDIX C:
ADALINE SOLUTION BY LAPLACE TRANSFORM

For Adaline learning with g8(x,y)5sgny2x, the
Laplace transforms to Eqs.~6!–~9!, respectively, are

G̃~z!5
1

z1l
2aD̃~z!G̃~z!, ~C1!

D̃~z!512D̃~z!G̃~z!, ~C2!

x̃0~z!2h̃0~z!5G̃~z!Fsgny0

z
2 x̃0~z!G . ~C3!

Solving for G̃(z) in Eqs. ~C1! and ~C2!, and applying the
inverse Laplace transform, the Green’s function become

G~ t !5E dk r~k!e2kt, ~C4!

wherer(k) is the density of states,

r~k!5Q~12a!d~k2l!1
A~kmax2k!~k2kmin!

2p~k2l!
,

~C5!
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with kmax,kmin5l1(Aa61)2, respectively. This enables u
to solve forx0(t) in terms ofh0(t) in Eq. ~C3!,

x0~ t !5
sgny0

a E dk r~k!~k2l!S 12e2kt

k D
1E dt8K~ t,t8!h0~ t8!, ~C6!

where

K~ t,t8!5d~ t2t8!2
Q~ t2t8!

a E dk r~k!~k2l!e2k(t2t8).

~C7!

The Laplace transform to the teacher-student correlatio
Eq. ~11! is

R̃~z!5
a

z1l
^g̃m8 ~z!ym&. ~C8!

Using the properties that ^ym sgnym&5A2/p and

^h̃m(z)ym&5R̃(z), we have

R̃~z!5A2

p

a

z

G̃~z!

11G̃~z!
, ~C9!

whose inverse Laplace transform yields

R~ t !5A2

pE dk r~k!~k2l!S 12e2kt

k D . ~C10!

The Laplace transform to the fluctuation response rela
Eq. ~10! is
-
,

in

n

C̃~z,w!5
1

z1lFa^g̃m8 ~z!x̃m~w!&1
2T

z1w
G̃~w!G .

~C11!

Noting further that^h̃m(z)h̃m(w)&5C̃(z,w), it can be cast
into a symmetric form whose inverse Laplace transfo
yields

C~ t,s!5E dk r~k!~k2l!F11
2

p
~k2l21!G S 12e2kt

k D
3S 12e2ks

k D1TE dk r~k!S e2kut2su2e2k(t1s)

k D .

~C12!

For the activation distributionp(xuy), we consider Eq.~C6!
and the Gaussian distribution of the cavity activation, wh
implies thatx0(t) is a Gaussian with mean and variance,

^x0~ t !&5
sgny0

a E dk r~k!~k2l!S 12e2kt

k D
1E dt8K~ t,t8!R~ t8!, ~C13!

^x0~ t !2&2^x0~ t !&25E dt1E dt2K~ t,t1!K~ t,t2!@C~ t1 ,t2!

2R~ t1!R~ t2!#. ~C14!

For random examples, the evolution of the parameters is
same, except thatR(t) is identically zero, and the term in th
square brackets in Eq.~C12! is replaced by 1.
v. E
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