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Many-body approach to the dynamics of batch learning
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Using the cavity method and diagrammatic methods, we model the dynamics of batch learning of restricted
sets of examples, widely applicable to general learning cost functions, and fully taking into account the
temporal correlations introduced by the recycling of the examples. The approach is illustrated using the
Adaline rule learning teacher-generated or random examples.

PACS numbeps): 87.10+e¢, 87.18.Sn, 07.05.Mh, 05.20y

[. INTRODUCTION vided foreachlearning step. Using the dynamical mean-field
theory, early work has been done on the steady-state behav-
An important problem in information processing is the ior and asymptotic time scales in perceptrons with binary
extraction of the parameters underlying a set of examplesyeights, rather than the continuous weights of more common
which is useful in such tasks as classification and regressioimterest[8]. Much benchmarking of batch learning has been
[1]. This process, usually callddarning is often achieved done for linear learning rules such as Hebbian learfng0]
by defining an appropriate energy function which reflectsor Adaline learnind11]. The work on Adaline learning was
both the inability of the parameters in reproducing the trainfurther extended to the study of linear perceptrons learning
ing data, and the unlikelihood in fulfilling their prior expec- nonlinear rule§14,15. However, not much work has been
tation. The energy function is then minimized by a gradientdone on the learning of nonlinear rules with continuous
descent process with respect to the parameters until a steadieights. In this respect, it is interesting to note the recent
state is reached. For many years, physicists have gained suattempts using thelynamical replica theonf9,10]. It ap-
cess in studying the steady-state behavior of learning prggroximates the temporal correlations during learning by in-
cesses using equilibrium statistical mechar{igs On the stantaneous effective macroscopic variables. Further ap-
other hand, the dynamics of learning was much less freproximations facilitate results for nonlinear learning.
quently addressed. The major difficulty is its complexity, Nevertheless, the rigor of these approximations remains to be
since it typically involves the evolution of many microscopic confirmed in the general case.
parameters, each element affecting and being affected by In this paper, we model batch learning of restricted sets of
others in a convolutional way. The challenge to the physi-examples, by considering the learning model as a many-body
cists is thus to describe this multivariate process using macystem. Each example makes a small contribution to the

roscopic variables. learning process, which can be described by linear-response
Recently, much progress has been made on modeling therms in a sea of background examples. Two ingredients are
dynamics ofon-line learning of infinite training setg3—6]. important to our theory.

In this model, an independent example is generated for each (a) The cavity methadOriginally developed for magnetic
learning step. Since statistical correlations among the exsystems and spin glassgk6], the method was adopted to
amples can be ignored, the dynamics can be simply ddearning in perceptrongl7], and subsequently extended to
scribed by instantaneous dynamical variables. This simplifithe teacher-student perceptrd8], the AND maching 19],
cation results in a significant reduction in the complexity ofthe multiclass perceptrof20], the committee tre¢21,22,
analyzing learning dynamics, thereby leading to great adBayesian learning23], and pruned perceptrog4]. These
vances in our understanding of on-line learning. Instudies only considered the equilibrium properties of learn-
multilayer perceptrons, for instance, the persistence of a peing, whereas here we are generalizing the method to study
mutation symmetric stage which retards the learning proceshe dynamics/16]. It uses a self-consistency argument to
was well studied. Subsequent proposals to speed up learnimgmpare the evolution of the activation of an example when
were made, illustrating the usefulness of the on-line apit is absent or present in the training set. When absent, the
proach[6,7]. activation of the example is called tlavity activation in
However, on-line learning represents an ideal case irontrast to its generic counterpart when it is included in the
which one has access to an almost infinite training settraining set.
whereas in many applications, the collection of training ex- (b) The diagrammatic approachlo describe the differ-
amples may be costly. In reality, the same restricted set aénce between the cavity activation and its generic counter-
examples is recycled during the learning process. This intropart of an example, we apply linear-response theory and use
duces temporal correlations of the parameters in the learninGreen’s function to describe how the influence of the added
history, which was the complexity circumvented in the mod-example propagates through the learning history. The
els of on-line learning. Green’s function is represented by a series of diagrams,
There have been attempts using statistical physics to davhose averages over examples are performed by a set of
scribe the dynamics of learning of finite training sets. Inpairing rules similar to those introduced for Adaline learning
batch learning, the same restricted set of examples is prg11], as well as in the dynamics of layered netwofR$).
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Here we take a further step and use the diagrams to describe dJ(t 1

the changes from cavity to generic activations, as was done g~ N > 9’ (X,(1),y )& = NJj(O) + (1), (D)

in [26], rather than the evolution of specific dynamical vari- a

ables in the case of linear rul¢$l]. Hence our dynamical

equations are widely applicable to any gradient-descen

learning rule which minimizes aarbitrary cost function in

terms of the activation. It fully takes into account the tempo-

ral correlations during learning, and is exact for large net- oT

works. _ _ (n;(t))=0 and <77j(t)77k(5)>:W5jk5(t_3)- (2
However, the solutions of the general dynamical equa-

tions are not tractable for nonlinear learning rules. In fact, the ) S )

study of the general solution constitutes an area of futurd "€ dynamics of the biag is similar, except that no bias

research and is beyond the scope of the present papf&acay should be present according to consistency arguments
l ’

Rather, for illustration, we apply the equations to a tractabl

case, namely Adaline learning, and extract results useful for dot) 1

efficient learning. Preliminary work has been presented re- _- /

cently [27]. gt =N 2 9 w0+ 7). ®
The paper is organized as follows. In Sec. Il we formulate

the dynamics of batch learning. In Sec. Il we introduce the

cavity method and the dynamical equations for the macro-

scopic variables(a) G(t,s), the Green’s function that propa- Our theory is the dynamical version of the cavity method

gates the response to a stimulus from tigite t; (b) C(t,s), [16,21,22. It uses a self-consistency argument to consider

the correlation function, which is related to the Green’s func-what happens when a new example is added to a training set.

tion via the fluctuation response relatidie) R(t), the over- ~ The central quantity in this method is tleavity activation

lap between the student and teacher perceptrons. In Sec. Which is the activation of a new example for a perceptron

we describe the results useful for efficient learning applied tdrained without that example. Since the original network has

the case of the Adaline rule. The appendixes explain th&o information about the new example, the cavity activation

diagrammatic approach in describing the Green’s functionis random. Here we present the theory fisr =0, skipping

the fluctuation response relation, and the expressions faxtensions to biased perceptrons. Denoting the new example

Adaline learning via the Laplace transform. by the label 0, its cavity activation at tinteis ho(t)=J(t)

&, For largeN, ho(t) is a Gaussian variable. Its covari-
ance is given by the correlation functio@(t,s) of the
Il. FORMULATION weights at timest and's, that is, (ho(t)ho(s)) = J(t) - J(s)
Consider the single layer perceptron wilt>1 input ~ =C(t,S), where&} and£} are assumed to be independent for
nodes{£;} connecting to a single output node by the weights] #k. For Fgacher—generated examples, the dlstr|but|pn is fur-
{J;} and often the bia® as well. For convenience we as- ther specified by the teacher-student correlagt), given
sume that the inputg; are Gaussian variables with mean 0 by (hy(t)yo)=J(t)-B=R(t).

here the prime represents partial differentiation with re-
pect tox, \ is the weight decay strength, ang(t) is the
noise term at temperatufiewith

lll. THE CAVITY METHOD

and variance 1, and the output state is a funcfipg of the Now suppose the perceptron incorporates the new ex-
activation xat the output node, whese=J- £+ 6. For binary ~ample at the batch-mode learning step at tisn@hen the
outputs, f(x) = sgnx. activation of this new example at a subsequent titas will

The network is assigned to “learnp=aN examples No longer be a random variable. Furthermore, the activations
which map inputs{ £/} to the outputs(S,} (u=1, ... p). of the original p eéamples at time will also be adjusted
In the case of random example, are random binary vari- rom {x,(t)} to {x,(t)} because of the newcomer, which
ables, and the perceptron is used as a storage device. In thél in turn affect the evolution of the activation of example
case of teacher-generated examp&sare the outputs gen- 0, giving rise to the so-called Onsager reaction effects. This
erated by a teacher perceptron with weighs} and often a makes the dynamics complex, 'but fortunately for Olapge
bias ¢ as well, namelyS, =f(y,); y,= B. &+ . _~N, we can assume that the adjustment frop(t) tp X, (1)

Batch learning is achieved by adjusting the weighitg is small, and Ilnear_—response thep_ry can be applied.
iteratively so that a certain cost function in terms of the ac-. SUPPOse the welghtg of the original and new perceptron at
tivations {x,} and the outpusS, of all examples is mini- {met are{J;(t)} and{Jj ()}, respectively. Then a perturba-

mized. Hence we consider a general cost functien ton of Eq.(1) yields
=—-2,0(x,,Y,). The precise functional form af(x,y) de-
pends on the adopted learning algorithm. In previous studies,
g(x,y)=—(S—x)%/2 with S=sgny in Adaline learning
[11-13, andg(x,y)=xSin Hebbian learning9,10]. 1 1
To ensure that the perceptron fulfills the prior expectation _ T 0, = Ll ”
of minimal complexity, it is customary to introduce a weight = N9 *o(UYo)é+ g % €197 (D), Y W)k
decay term. In the presence of noise, the gradient descent o
dynamics of the weights is given by X[Ie(t) = (V) ]. (4)

d)\
a-l—

[IP(t)—J;(0)]
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The first term on the right-hand side describes the primary
effects of adding example O to the training set, and is the C(LS):OZJ’ dt’GO(t—1")(g,,(t")x,(s))
driving term for the difference between the two perceptrons.
The second term describes the many-body reactions due to
the changes of the original examples caused by the added
example, and is referred to as the Onsager reaction term. One
should note the difference between the cavity and generiEurthermore, for teacher-generated examples, its mean is re-
activations of the added example. The former is denoted biated to the teacher-student correlation given by
ho(t) and corresponds to the activation in the perceptron
{J;(t)}, whereas the latter, denoted ky(t) and correspond- _ f 1)t _t1\/ ! (1!
ing to the activation in the perceptre{)ﬂo(t)} is the one used RO=a | dUGT=U){g,(t)Y,.)- @D
in calculating the gradient in the dnvmg term of E@). _ ) _ _
Since their notations are sufficiently distinct, we have omit- 10 monitor the progress of learing, we are interested in
ted the Superscript 0 imo(t), which appears in the back- three perfo_r_mance measureéa). Trf';u_nmg error €, which is
the probability of error for the training examples, and can be
ground examples?(t).
The equation can be solved by the Green's-function teChdetermmed from the distributiop(x|y) that the student ac-
nique, yielding tivation of a trained example takes the vabudor a given
teacher activatioly of the same example,

1
VUERTUEDY fdsqku,s)(ﬁgs(s)sﬁ), (5) et:f Dyf dx p(x|y) O (= xy). (12)

+2Tf dt’GO(t—t")G(s,t’). (10

where gy(s)=g'(Xo(S).Yo) and Gj(t,s) is the weight (b) Testerrore,g, which is the probability of error when the
Green’s functionwhich describes how the effects of a per- inputsj* of the training examples are corrupted by an addi-
turbation propagates from weigldf at learning times to  tive Gaussmn noise of variand€. This is a relevant perfor-
weight J; at a subsequent tinte In the present context, the mance measure when the perceptron is applied to process
perturbation comes from the gradient term of example Odata which are the corrupted versions of the training data.
such that integrating over the history and summing over alWWhen A%2=0, the test error reduces to the training error.
nodes give the resultant change frdpt) to Jo(t) Since the corrupted activation has an additional variance of
For largeN the weight Green’s funct|on can be found by AZC(t t), €wstiS given by
the diagrammatic approach explained in Appendix A. The

result is self-averaging over the distribution of examples and X sgny
is diagonal, i.e., lim_...Gjx(t,s)=G(t,s) 5, Where €es= | DY | dx p(x|y)H A%y (13
G(t,5)=GO(t—s)+ f dt f dt.GO(t—t (c) Generalization errore, for teacher-generated examples,
(t.s) (t=s)+a ! 2 (t=ty) which is the probability of error for an arbitrary inpyt

when the teacher and student outputs are compared. For an
example with teacher activation the corresponding student
activation is a Gaussian with medR(t)y and variance
C(t,t). Henceey is given by
GO(t—s)=0(t—s)exp(—\(t—9)), 7 1

€,=— arccos

and O is the step functionD ,(t,s) is theexample Green’s 77 C(t,t)
functiongiven by

X(D,(1,12)7,,(t2))G(t5,5). (6)

Here the bare Green'’s functid®(®)(t—s) is given by

R(t)

(14

The cavity method can be applied to the dynamics of learn-

ing with an arbitrary cost function. When it is applied to the
D,(t,s)=4(t— s)+f dt'D,(t,t") g, (t")G(t",s). (8) Hebb rule, it yields results identical {8]. Here for illustra-

tion, we present the results for the Adaline rule. This is a
common learning rule and bears resemblance with the more
common back-propagation rule. Theoretically, its dynamics
is particularly convenient for analysis sing&(x) = —1, ren-
dering the weight Green'’s function time translation invariant,
i.e., G(t,s)=G(t—s). In this case, the dynamics can be
solved by the Laplace transform explained in Appendix C.
Results useful for efficient learning are illustrated in the fol-

o) ~o(0)= [ ds GL9)gi(s). (99  lowing section.

Our key to the macroscopic description of the learning dy-
namics is to relate the activation of the examples to their
cavity counterparts, which is known to be Gaussian. Multi-
plying both sides of Eq(5) by 5? and summing ovey, we
have

. . . T IV. RESULTS
In turn, the covariance of the cavity activation distribution is

provided by the fluctuation-response relation explained in (i) Overtraining ofe,. As shown in Fig. 1¢4 decreases at
Appendix B, the initial stage of learning. However, for sufficiently weak
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FIG. 1. The evolution of the generalization erroraat 0.8 and
T=0 for different weight decay strengths. Theory: solid line,
simulation: symbols.

FIG. 3. The training error atr=0.1 and\ =5 of the thermally
averaged perceptron for random examples versus the duratbn
the monitoring period for thermal averaging. Inset: The lines of the
optimal weight decaw ., and the onset of overtraining,, of the
weight decay, it attains a minimum at a finite learning timetest error for teacher-generated exampleaat3 andT=0.3.
before reaching a higher steady-state value. This is called
overtraining since at the later stage of learning, the percep- Early stopping fol\ <X o=\ Can speed up the learning
tron is focusing too much on the specific details of the trainfrocess, but cannot outperform the optimal result at the
ing set. In this casey can be optimized bgarly stopping steady state. A recent empirical observation confirms that a
i.e., terminating the learning process before it reaches theareful control of the weight decay may be better than early
steady state. Similar behavior is observed in linear percepstopping in optimizing generalizatidi28].
trons[13-15. At nonzero temperatures, we find the new result that

This phenomenon can be controlled by tuning the weigh&nd X o, may become different. Here we only mention the
decay\. The physical picture is that the perceptron with case of sufficiently larger. As shown in the inset of Fig. 2,
minimum e, corresponds to a point with a magnituhfé|. Nopt lies inside the region of overtraining, implying that even

WhenN\ is too strong,|j| never reaches this magnitude andthe best steady statg is outperformed by some point during

€4 saturates at a suboptimal value. On the other hand, whe'l;rgls own learning history. This means the optireglcan only

] - . i , ) e attained by tunindpoth the weight decay and learning
\ is too weak,|J| grows with learning time and is able t0 {ime. However, at least in the present case, computational
pass near the optimal point during its learning history. Hencgegits show that the improvement is marginal.

the weight decay o for the onset of overtraining is closely (i) Overtraining ofe,.s, Consider the effects of tuning the
related to the optimal weight decay,, at which the steady iyt noise from zero, wheg, starts to increase frorg, .
stateey is minimum. Indeed, .ail'.=0 and for all vaIues. of At the steady state, is optimized byx =0 for <1, and by
@, No=Aop=m/2—1; the coincidence ohy and Aopi IS 4 relatively small\>0 for @>1. This means thag,e is
also observed previoushi3]. This is illustrated in Fig. 2, optimized with no or only little concern about the magnitude
which shows the early stopping tintgs at whicheg is mini- - of 32 However, when input noise is introduced, it adds a
mum in the learning history. For weak weight deceyre-  Gayssian noise of variana?J? to the activation distribu-
mains relatively insensitive to the value ®f but diverges o, The optimization ofe,.s; NOW involves minimizing the
when\ approaches. op. error of the training set without using an excessively large
J2. Thus the role of weight decay becomes important. In-
10 - 06 ¢ deed, atT=0, Agp= aA? for random examples, whereas
)\optocAz approximately for teacher-generated examples. This
sl o illustrates how the environment in anticipated applications,
\@op, Ay : i.e., the level of input noise, affects the optimal choice of
- perceptron parameters.

00, os : Analogous to the dynamics ef;, overtraining can occur

o - T s J i
: fomporature when a sufficiently weak allowsJ to pass near the optimal

point during its learning history. Indeed, B0 the onset of
overtraining is given by =\ for random examples,
whereas\ o~ \ o for teacher-generated examples. At non-
zero temperatures,; and\ , become increasingly distinct,
and for sufficiently largex, \q<\q as shown in the inset

%0 02 N 04 708 of Fig. 3, so that the optimaé,.; can only be attained by
tuning both the weight decay and learning time.
FIG. 2. Early stopping timé, for different training set size. (iii) Average dynamicdVhen learning has reached steady

Inset: The temperature dependence of the optimal weight degay state, the dynamical variables fluctuate about their temporal
and the onset of overtraining, at «=5. averages because of thermal noises. If we consider a percep-
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tron constructed using the thermally averaged weighsy, bias to be learned slower than the weights. Details will be
we can then prove that it is equivalent to the perceptrorpresented elsewhere.
obtained afT=0. This equivalence implies that for percep- We consider the present work as the beginning of an in-
trons with thermal noises, the training and generalization erdepth study of learning dynamics. An important issue is thus
rors can be reduced by temporal averaging down to those #thether the analysis remains tractable for nonlinear learning
T=0. rules. In generalD ,(t,s) in Eq.(8) has to be expanded as a
We can further Compute the performance improvement ageries. The dynamical equations are then the Starting point of
a function of the durationr of the monitoring period for & perturbation theory. Another applicable area is the case of
thermal averaging, as confirmed by simulations in Fig. 3. Inbatch learning with very large learning steps, whose analysis
the asymptotic limit, the average overlap of the studgnt remains simple due to its fast convergeft4]. Preliminary
with the teache, is independent of time, so thaf) - B results are promising. The method can also be applied to

=lim,_,,R(t). On the other hand, its amplitude is given by on-line Iearnlng of restricted sets of examples. L
An alternative general theory for learning dynamics is the

. 2 [Totr t dynamical replica theor}9]. It yields exact results for Heb-
C=lim — dtlf dt,C(tq,t5). (15  bian learning, but for less trivial cases, the analysis is ap-
To—07 JTo To proximate and complicated by the need to solve replica
saddle point equations at every learning instant. It is hoped

Using Eq.(C12), this reduces to that by adhering to an exact formalism, the cavity method
dk p can provide more fundamental insights when extended to
C= f Fp(k)(k_)\) 1+ ;(k—)\—l)} multilayer networks.
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Note that the density of stategk) consists of a spectrum of HKUST615/999,

relaxation modes exp(kt) whose ratek lies in the range

Kin<K=<Kmax, Wherekmax and ky, are A+ (Ja*1)?, re-

spectively. Fora<1, there is an additional relaxation mode

with rate\, which describes the relaxation by weight decay  substituting Eq(5) into Eq. (4), we see that the Green’s

inside the N\—p)-dimensional solution space of zero train- function satisfies

ing error. Hence the monitoring period scaleskﬁ,#, for a 1

>1 and A"! for a<1. This thermal equilibration time |9 ) CS(t_oy S 4 . s

agrees with the relaxation time proposedqfor asymptotic dy-(dt H\)G'k(t's) =9t % §0u(DEC(L.S).

namics in[11]. (A1)
We remark that the relaxation time for steady-stafte dy-Introducing the bare Green’s functi@®(t—s) in Eq. (7),

namics may not be the same as the convergence time for

APPENDIX A: THE GREEN’S FUNCTION

learning in the transient regime. For example, for vanishing 1

« at T=0, a significant reduction of, takes place in a time Gi(t,5)=GO(t—s) 5+ N > f dt'GO(t—-t)
scale proportional to (£\) 1. Hence for a vanishing m

weight decay, this time scale is independenk pfvhich can X &g (1) ELG(t',s). (A2)

be attributed to the dynamics being dominated by a growth
of the projection onto the solution space of zero trainingThis equation is represented diagrammatically in Fig).4
error. On the other hand, the asymptotic relaxation time di\Ve use a slanted line to represent an example bit, the top and
verges as. !, since the weight vector already resides in thebottom ends of the line corresponding to the example label
solution space. and node label, respectively. A filled circle represegj’;(;t).
Thin and thick lines represent the bare and dressed Green’s
functionsG(9(t—s) and G(t,s), respectively. The iterative
solution to Eq.(A2) can be represented by the series of dia-
In summary, we have introduced a general framework foigrams in Fig. 4b). It is convenient to concurrently introduce
modeling the dynamics of learning based on the cavitythe exampleGreen’s functiorD ,(t,s) as shown in Fig. &).
method, which is applicable to general learning cost func- The average over the distribution of example inputs is
tions, though its tractable solutions are not generally availdone by pairing of example or node labels and is represented
able. It allows us to reach useful conclusions about overtrainby dashed lines connecting the vertices above or below the
ing and early stopping, input noise and temperature effectsolid lines. Pairing of example and node labels yields factors
transient dynamics, and average dynamics. of 1 and «, respectively. Noting that crossing diagrams do
An example of extending the present study concerns theot contribute[11], the two Green’s functions can be ex-
case of learning in biased perceptrons. Since no decay terpressed in terms of the self-energiEsand II,,, via the
is present in the learning of the bias in E8), its dynamics Dyson'’s equations in Fig.(d). The self-energies are defined
is modified. For sufficiently large weight decay, we find thatin Fig. 4(e), and are characterized by having the first node or
there is an additional relaxation mode which may cause thexample paired with the last one only. The self-energies can

V. CONCLUSION
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tions; (e) the self-energiegf) the self-energies in

terms of the Green'’s functions.

©

Il
+
+

Z& A\ .
T AT
[\

(f) _ m
in turn be expressed in terms of the Green’s functions as in 1) t'te
Fig. 4(f), thus allowing for self-consistent solutions. Ji(s)=3;7" (s)+ Jt_ dt"G(s,t") 7;(t").  (B3)
After eliminating the self-energies, the results of the dia- ¢
grammatic analysis are given by E@6) and(8). Noting thatJ; " ")(s) is uncorrelated withy;(t'), and 7;(t")
has aé-function correlation withz;(t'), we arrive at Eq.
APPENDIX B: (10. o , _
THE FLUCTUATION RESPONSE RELATION Similarly, multiplying both sides bj3; and summing over

j, we arrive at Eq(11).
In terms of the bare Green’s function, the solution to the

dynamical equatiortl) is APPENDIX C:
ADALINE SOLUTION BY LAPLACE TRANSFORM

1 For Adaline learning with g’(x,y)=sgny—x, the
. — 1O)t 47\ (+7) & y ,
i N ; J drGT(t—t")g,,(t )gJﬂ Laplace transforms to Eq&6)—(9), respectively, are
~ 1 -~
+f dt'GO(t—t") ;(t"). (B1) G(2)= 1 —aD(2)G(2), (Cy
Multiplying both sides byJ;(s) and summing ovej, we D(z2)=1-D(2)G(2), (C2
have saYy ~

Xo(2)—hy(2)=G(2)

—Xo(2) |- (C3

C(t,s)= fdt’G(O) t—t){(g/(t")x,(s ~
(Ls)=a ( HOLEIXu(S)) Solving for G(z) in Egs.(C1) and (C2), and applying the

inverse Laplace transform, the Green'’s function becomes
+j dt’GO(t—t") > J(s)7(t). (B2
: G(t):f dkp(k)e K, (C4)

The correlgtion betweeplj(s) and nj(t’_) can be consider_ed ‘wherep(K) is the density of states,
by comparing the learning process with another one which is
noiseless betwedn — e andt’ + €, but is otherwise identical. V(Kemas— K) (K= Kpmin)

_ . . . %) p(K)=0(1—a)s(k—\)+ )
Denoting the weight of this alternative processl?i,‘ , we 2m(k—N\)
have (CH
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with kmax,kmm=)\+(\/5i 1)2, respectively. This enables us - 1 -~ 2T
to solve forx,(t) in terms ofhy(t) in Eq. (C3), Clzw)=_~ a(g,(2)X,(w))+ S CW .
—kt (C1)
sgny —-e
rat)= 222 akpto k| T | | o
a Noting further that(h,(z)h,(w))=C(z,w), it can be cast
into a symmetric form whose inverse Laplace transform
+f dt’K(t,t")hg(t"), (Ce)  yields
2 1—e K
where C(t,s):fdkp(k)(k—)\) 1+ ;(k—)\—l)}( ) )
t_t’ !
K(t,t'):a(t—t')—(—)f dkp(k)(k—x)e 1), 1-e ks e Himsl_g ki+s)
a X +Tf dk p(k)
(C7) Kk k
The Laplace transform to the teacher-student correlation in (C12
Eq.(11) is For the activation distributiop(x|y), we consider Eq(C6)
o and the Gaussian distribution of the cavity activation, which
R(z)= m(ﬁ;(z)y#)_ (C8  implies thatxy(t) is a Gaussian with mean and variance,
. . sgny, —e Kk
l.ismg the~ properties  that (y, sgny,)=\2/m and (Xo(t))= f dk p(k)(k—\) »
(h.(2)y,.)=R(2), we have «
~ 2a G(2) +f dt’K(t,t")R(t), (C13
RO=\ -5 —= (C9
T™Z1+G(2)
whose inverse Laplace transform yields <Xo(t)2>—<xo(t)>2:f dtlf dtK(t,t1)K(t,t)[C(ty,t)
2 1—e K -
R(t)= \/;f dkp(k) (k=) — ) (C10 R(t)R(tp)]. (C14

For random examples, the evolution of the parameters is the
The Laplace transform to the fluctuation response relatiosame, except th&(t) is identically zero, and the term in the
Eq. (10) is square brackets in EGC12) is replaced by 1.
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